
Journal of Applied Mechanics and Technical Physics, Vol. 37, No. 5, 1996 

T H E  W A V E  R E S I S T A N C E  O F  A M P H I B I A N  

A I R C U S H I O N  V E H I C L E S  I N  B R O K E N  I C E  

V .  M .  K o z i n  and  A.  V .  M i l o v a n o v a  UDC 624.124; 532.595 

The ice-breaking properties of amphibian aircushion vehicles (AACV), which have recently been 
discovered, [1] make it necessary to solve a number of new applied problems [2]. One of the promising methods 
of ice breaking with the aid of AACV is the resonance method [2] which is applied at speeds corresponding 
to maximum wave resistance. In this connection determination of the wave resistance to AACV under ice 
conditions becomes very important .  In the absence of ice this problem has been theoretically solved for the 
movement of a vehicle in deep and shallow water [3, 4], in a channel [5], and with acceleration [6]. The present 
paper is concerned with the stationary problem of the wave resistance to AACV in broken ice. 

1. Let there be a given system of the AACV surface pressures moving at a constant velocity u over an 
infinite water field covered by broken ice. In accordance with the principle of inverse motion, we assume that a 
load q(x, y) is applied to the free liquid surface covered by broken ice and moving with velocity - u  as x --~ oo. 
The coordinate system that  is stationary relative to the vehicle is located as follows: the plane xOy coincides 
with the unperturbed ice-water interface, the x axis points in the direction of the vehicle's motion, and the 
z axis points vertically upward. The water is assumed to be an ideal incompressible liquid with density p2. 
Broken ice is represented in the form of floating disconnected masses. Interaction forces between separate ice 
floes are ignored, and their dimensions are considered sufficiently small compared with the wavelength so that 
ice-floe bending does not occur [7]. Full-scale tests [2] show this approach to be quite justifiable in solving 
problems on the propulsive properties of AACV in ice broken by the resonance method.  

Use is made of the assumption that  the field covered by broken ice is continuous [7], and the surface 
density coinciding with the floating-particle mass per unit area is given by the continuous function 

m(x ,y )  = plh -- p~ (1.1) 

where p0 is the ice physical density; s(x, y) is a dimensionless function of ice-floe tightness [7] (0 ~ s ~ 1); and 
h(x, y) is the ice thickness. To simplify the problem, the quantities h and s are further considered constant. 

In the adopted coordinate system, the velocity potential ~p(x,y, z) of fluid perturbed motion must 
satisfy the Laplace equation A T = 0 and the linearized boundary conditions 

z = 0 :  02~~ 0~o g Oqa plh 03~o _ 1 0 q  0qo 0. (1.2) 
Oz 2 tt-~z + ~ - g ;  + p 2 0 z O z  2 p2u 0-7' z = - H  : 0---~ = 

Here tt > 0 is the coefficient of scattering forces [3, 8]; H = H1 - a; H1 is the water-body depth; and 
a = hp~ is the ice immersion depth at static equilibrium. For great depths, when H1 >> h, it can be 
assumed that H ~ H1. 

According to [3, 9], the wave resistance to AACV is numerically equal to the horizontal projection of 
the resultant of pressure forces onto the surface 

R / /  Ow(z, = q(x,y) -~xY)dxdy, (1.3) 

(n) 
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where ~ is the domain of load distribution q(x, y) and w(z, y) is the floating-fluid surface deformation defined 
in the linear theory of waves as [10] 

u ( o ~ ( x , y , z ) )  ,,p,h (o2~(x,y,  
w(x,y) = g \  Ox )L=o q(x,y____) P2g "\ OxOz z))l,=o" (1.4) 

The desired potential r is calculated by the scheme suggested in [3]. According to [3, 9], the functions 
~o(x, y, z) and q(x, y) are written in the form of Fourier integrals 

oO 1" 
1 

/ / ( A e  -k~ + zo) cos 0 + (y - y0) sin 0]} dxo dyo, ~o(x,y,z) = ~2 f kdk [ dO BekZ)exp{ikt(x- 
o - , ,  (n )  

,, (1.5) 
1 

47 / /  o/I  osO + s,,,. o1 . 
0 - ~  ( a )  

Here A and 13 are unknown functions of the variables x0, y0, k, and 0, which are to be determined. 
Substitution of (1.5) into boundary conditions (1.2), application of the residue theory and subsequent 

passage to the limit at p ~ 0 [3, 8] allow one to obtain the potential function ~o(x, y, z). The wave resistance of 
the system of surface pressures is shown to be determined only by the part of the potential that  at subcritical 
motion velocities (u < ~ has the form 

~o(x,y,z)= 1 f f  2rp2u q(xo, yo)dxodyo cosh(A(z + H)) 
cosh(AH) 

(n) ~0 

cos [(x - xo)~/vA tanh(AH)/(1 + plhA tanh(AH)/p2)] 
X 

[. A 

~/~2 _ ~ tanh(~H)/(1 + pl hA tanh(~H)/p~) (1 + (pl/p2)h~ tanh(~H)) 

• cos [(y-- y0)~A 2 - vA tanh(AH)/(1 + plhAtanh()~H)/p2)]Ad)~, (1.6) 

where v = g/u s and A0 is a solution of the transcendental equation vtanh()~H) = A(1 + (p~/p2)hAtanh(AH)). 
At critical and supercritical motion velocities (u ~ ~ / ' ~ )  in expression (1.6) for the potential, the 

quantity A0 is replaced by zero. 
2. In the case of an infinitely deep liquid body (H = c~) relation (1.6) is simplified. In terms of (1.3) and 

(1.4) the formula for the wave resistance of the rectangular system of constant pressures [q(x, y) = qo =- const] 
moving over the broken ice surface takes the form 

Roo/D = A~qo/(P29L). (2.1) 
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Here 

-~- \ 2 V l  + a A )  sin2 1 + a A ) (  X2 1 + a A )  XdA; 

kL = gL/u2; D = qoLB; L and B are the length and width of the aircushion; w = L I B  is its aspect ratio; 
a = plh/(p2L) is a dimensionless parameter that characterizes the ice tightness and thickness; and B is a 
solution of the quadratic equation A(1 + aA) = kL. 

It should be noted that in the limiting case where h -~ 0 or Pl -+ 0(s ---+ 0), formula (2.1) becomes the 
relation obtained in [3] for the "clean" surface of an infinitely deep liquid body. 

The main results of the numerical calculations by formula (2.1) are presented in Figs. 1 and 2. Curves 
1-3 in Fig. 1, which correspond to w = 2 and a = 0, 0.045, and 0.09, illustrate the influence of broken iceon the 
wave-resistance coefficient as a function of k/~. It can be seen that as a grows, the point of absolute maximum 
of the coefficient Aoo is shifted toward lower velocities, and the absolute maximum decreases. Curves 1, 3, 
and 4 in Fig. 2 reflect the dependence of the absolute maximum of the wave resistance coefficient A~o on the 
parameter w for a = 0, 0.045, and 0.09, respectively. Analysis of the behavior of the curves suggests that when 
AACV move over the surface of an infinitely deep water body the effect of broken ice on the wave resistance 
of the vehicle is insignificant. For a ~ 0.09 and w = 1.5-3.0, the absolute maximum of the wave-resistance 
coefficient can be calculated with an error smaller than 7% from the linear dependence below (straight line 2 
in Fig. 2): 

A~  = 3.2 - 0.4w. (2.2) 

3. We consider the motion of the rectangular system of constant pressures q0 over the surface of a 
finite-depth water body. In the case of subcritical velocities (u < ~ - ~ ) ,  taking formulas (1.3)-(1.5) into 
account leads to the following relation for the wave resistance of the rectangular system of constant pressures 
q0 in broken ice: 

R I D  = qoA,/(p2gL). (3.1) 

Here 
oo 

ro 

X sin 2 (1--}---.[, 2 kHvtanhr '~ kt tr tanhr -3/2 
\2w7 v - 1 + ~ n h , ,  ( ,2  - 1 + ~ _ l r t a n h T )  , d r ;  

2t = H/L; kH = gH/u2; and To is a solution of the transcendental equation kHtanhr  = r(1 + a3 , - l r t a nh r ) .  
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At supercritical velocities of motion (u > /~ / -~) ,  formula (3.1) remains valid, provided that r0 = 0. 
The results of the numerical calculation of formula (3.1) are presented in Figs. 3 and 4. Figure 3 shows 

the dependence of A] on the aspect ratio w for various ~ and % Curves 1-3 correspond to 7 = 0.15 and o = 0, 
0.018, and 0.045; curves 4 and 5 to 7 = 0.3 and o = 0 and 0.045; curves 6 and 7 to 7 = 0.6 and a = 0 and 
0.045; and curve 8 is relation (2.2). It is seen that with decreasing relative depth "~ the effect of the parameters 

and w on AI increases. 
Figure 4 presents the relative quantity A~/A*~ versus % where the coefficients A] and A~o are taken 

at equal ~ and w. Curves 1-3 correspond to (~ = 0 and w = 1.67, 2, and 2.5; curves 4-6 to ~ = 0.045, and 
w = 1.67, 2, and 2.5. It can be seen that with decreasing depth A] sharply increases and substantially exceeds 
A~o. With increasing 7 the value of A~/A~o tends to unity. 

The calculations performed show that the wave resistance of AACV in broken ice for a relative water- 
body depth 7 /> 0.8 can be calculated by formula (2.2). As the water-body depth decreases, the absolute 
maximum of the wave-resistance coefficient increases sharply, and the influence of the broken ice is enhanced 
as well. 
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